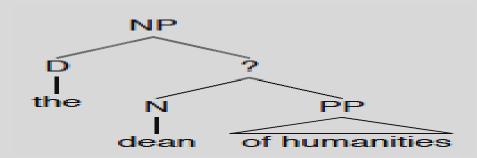
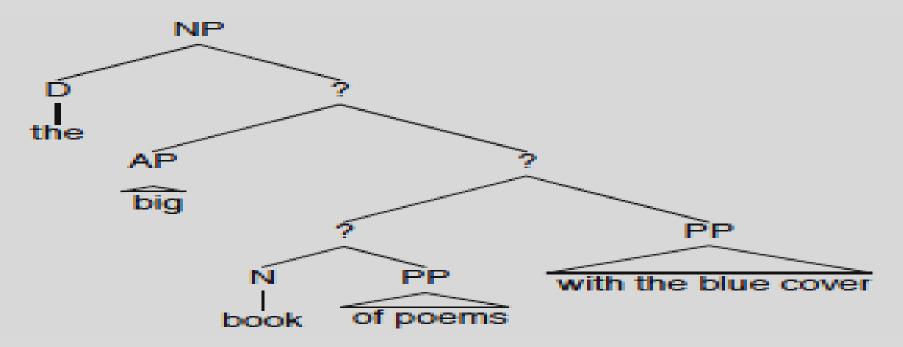

The notion of 'bar-level' in Generative Syntax

- The concept of 'bar' has been introduced in generative syntax in order to give the tree-diagram a binary opposition.
- With this notion of 'bar', we can change the 'flat' representation of the tree to binary.
- The notion of a 'head' helps to make up a phrase, such as XP where X can be replaced with N,V,A,P and Adv and we create NP, VP, AP, PP and AdvP etc.
- The head can be part of its modifier(s) and thus make the relationship of sister of the head that is called 'complement'.
- But there is a need to plug in the 'adjuncts' also into the tree as well but with a different relation to the head.
- It is here, where the notion of 'bar-level' comes to help us to create an intermediate level that establishes different relationship of head to complement and to that of the adjunct.

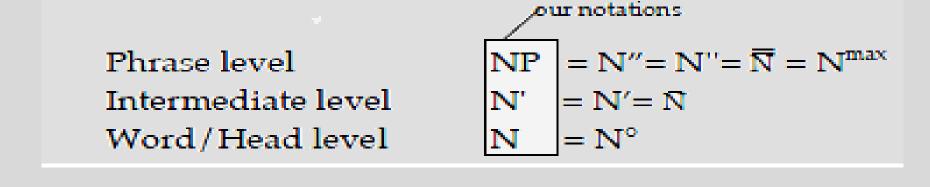
A very simple rule of NP: NP \rightarrow (D) (AdjP+) N (PP+) (1) I bought [that big book of poems with the blue cover].


(2) the [dean of humanities]

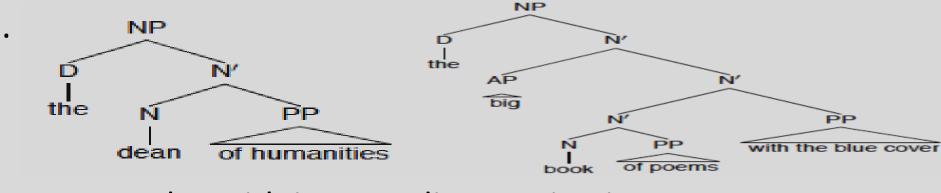

But what if we want a 'binary branching' for our tree

The previous trees would look like as follows:

2. the [dean of humanities]



1. that [big [[book of poems] with the blue cover]]


Different level of projection of the 'head' and other elements in the tree diagram:

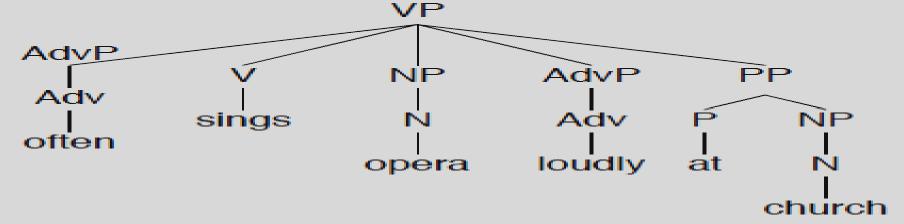
- 1. Maximal projection = Phrase level
- 2. Intermediate projection = intermediate level
- 3. Zero level projection = head/word level

We use N (N-bar) to refer to the intermediate projections in NP.

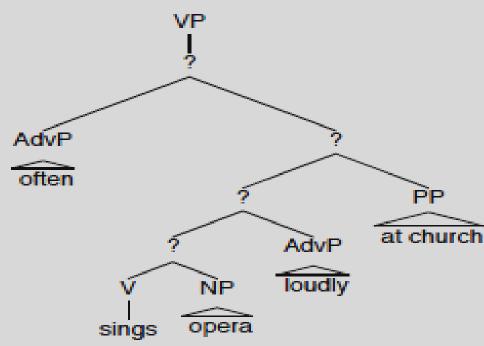
This 'bar-level' will convert the tree into a 'binary' in place of a ternary or more branches coming out from the 'phrasal-nodes'.

- New NP-rules with intermediate projection:
- a. NP \rightarrow (D) N'
- b. N' → (AdjP) N'
 c. N ' → N ' (PP)
- d. N $' \rightarrow$ N (PP)

This allows us to add as many as 'adjuncts' that we want to add to the tree.

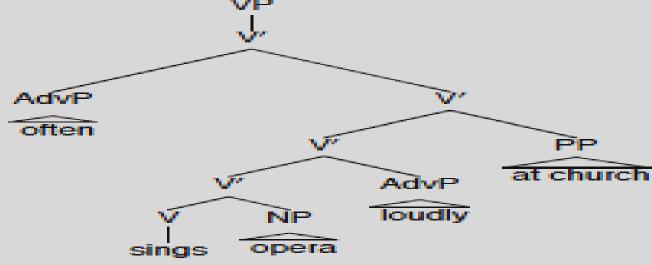

This is known as the 'recursive-ness' feature of the syntactic

tree.
This is the most powerful 'tool' that 'generative grammar' has and this has also led to the postulation of 'x-bar' theory.


Flat VP structure:

 $VP \rightarrow (AdvP+) V (NP) (AdvP+) (PP+)$

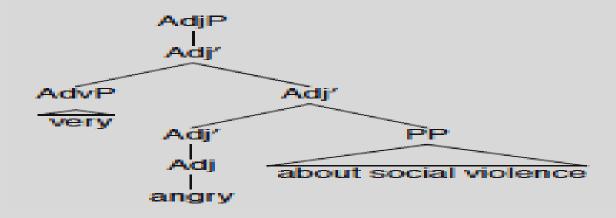
John [often sings opera loudly at church].



VP-structure with 'V-bar':

Intermediate Projections in VP

We will use V (V-bar) to refer to the intermediate projections in VP.

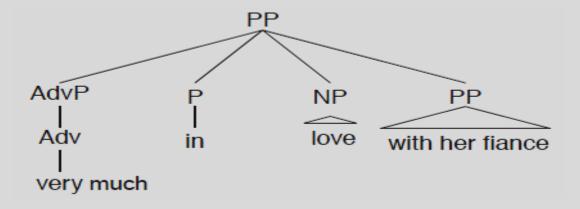


New VP Rules with Intermediate Projections:

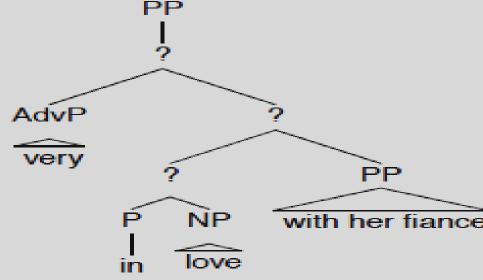
- a. $VP \rightarrow V'$
- b. $V' \rightarrow (AdvP) V'$
- c. $V' \rightarrow V' (\{AdvP/PP\})$
- d. $V' \rightarrow V (NP)$

Intermediate Projections in AdjP

We will use Adj (Adj-bar) to refer to the intermediate projections in AdjP


New AdjP Rules with Intermediate Projections

- a. $AdjP \rightarrow Adj'$
- b. $Adj' \rightarrow (\{AdvP/AdjP\}) Adj'$
- c. $Adj' \rightarrow Adj'$ (PP)
- d. $Adj' \rightarrow Adj (PP)$

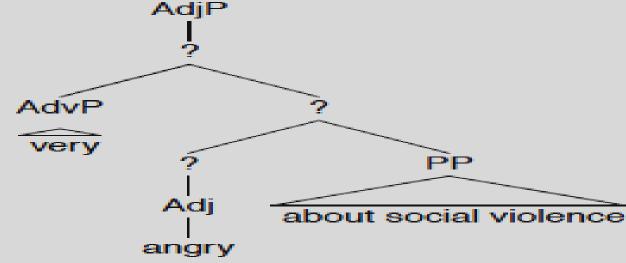

Flat PP Structure

 $PP \rightarrow (AdvP) P (NP) (PP)$

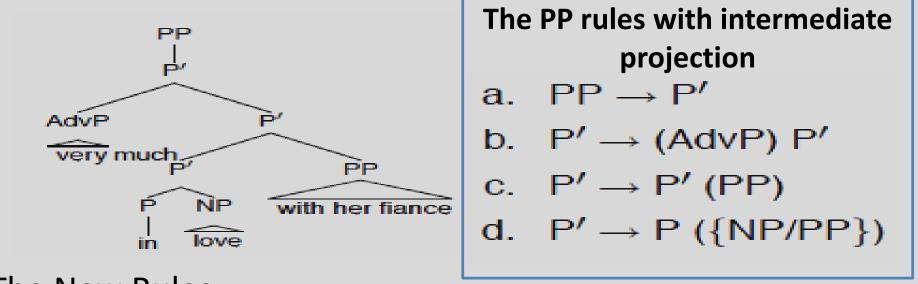
Mary is [very much in love with her fiancé].

If we have intermediate projection, we will have the above tree in the following way:

The Flat AdjP Structure


 $AdjP \rightarrow (AdvP+) Adj (PP)$

John is [very angry about social violence].


The Tree-diagram with flat AdjP Structure

If we draw the same tree with intermediate-level of projection of the adjective phrase, we will have following structure:

If we fill up the 'bar' level for preposition in the following diagram, we will get the tree given below:

The New Rules

a.
$$NP \rightarrow (D) N'$$
 i. $AdjP \rightarrow Adj'$

b.
$$N' \rightarrow (AdjP) N'$$
 j. $Adj' \rightarrow (\{AdvP/AdjP\}) Adj'$

c.
$$N' \rightarrow N'$$
 (PP) k. $Adj' \rightarrow Adj'$ (PP)

d.
$$N' \rightarrow N$$
 (PP) I. $Adj' \rightarrow Adj$ (PP)

e.
$$VP \rightarrow V'$$
 m. $PP \rightarrow P'$

f.
$$V' \rightarrow (AdvP) V'$$
 n. $P' \rightarrow (AdvP) P'$

g.
$$V' \rightarrow V'$$
 ({AdvP/PP}) 0. $P' \rightarrow P'$ (PP)

h.
$$V' \rightarrow V$$
 (NP) p. $P' \rightarrow P$ ({NP/PP})

Generalizing the Rules

Headedness: In each rule, the only item that is obligatory is the item that gives its category to the node that dominates it.

Every phrase has a head (endocentricity). NP \rightarrow N(AP)

Optionality

With the exception of determiners (in this course as we can't talk about DP in intro level course), all non-head materials are both phrasal and optional.

 $VP \rightarrow V$ (PP, NP) (in case of an intransitive verb)

We have already seen this in earlier slide, but let us put it

here again: AdjP → Adj' j. Adj' → ({AdvP/AdjP}) Adj' a. NP \rightarrow (D) N' e. $VP \rightarrow V'$ k. $Adj' \rightarrow Adj'$ (PP) b. $N' \rightarrow (AdjP) N'$ I. $Adj' \rightarrow Adj (PP)$ f. $V' \rightarrow (AdvP) V'$ m. $PP \rightarrow P'$ c. $N' \rightarrow N'$ (PP) g. $V' \rightarrow V'$ ({AdvP/PP}) n. $P' \rightarrow (AdvP) P'$ o. $P' \rightarrow P'$ (PP) d. $N' \rightarrow N (PP)$ h. $V' \rightarrow V$ (NP) p. $P' \rightarrow P (\{NP/PP\})$

Generalizing the rules:

For each major category, there are 3 types of rules.

- 1. A rule that generates the phrase: XP → (YP) X'
 - a. NP \rightarrow (D) N'

c. $AdjP \rightarrow Adj'$

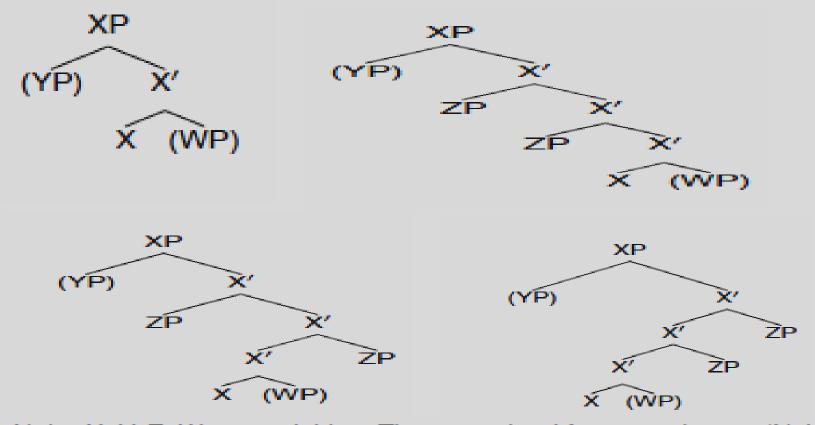
b. $VP \rightarrow V'$

- d. $PP \rightarrow P'$
- **2.** A rule that iterates: $X' \rightarrow (ZP) X'$ or $X' \rightarrow X'$ (ZP)

 - a. $N' \rightarrow (AdjP) N'$ e. $Adj' \rightarrow (\{AdvP/AdjP\}) Adj'$
 - b. $N' \rightarrow N'$ (PP) f. $Adj' \rightarrow Adj'$ (PP)

- c. $V' \rightarrow (AdvP) V'$ g. $P' \rightarrow (AdvP) P'$
- d. $V' \rightarrow V'$ ({AdvP/PP}) h. $P' \rightarrow P'$ (PP)

- 3. A rule that introduces the head: X' → X (WP)
 - a. $N' \rightarrow N$ (PP)


c. $Adj' \rightarrow Adj (PP)$

b. $V' \rightarrow V (NP)$

d. $P' \rightarrow P (\{NP/PP\})$

X-bar theory:

- Specifier Rule: XP → (YP) X'
- Adjunct Rule: X' → (ZP) X' or X' (ZP)
- Complement Rule: X' → X (WP)

Note: X, Y, Z, W are variables. They can stand for any category (N, V, Adj, Adv, P). The category standing for X, X', and XP must be consistent through the 3 rules.

Maximal generalization:

Let
$$X = \{N \mid V \mid A \mid P \mid Adv\}$$

Then $X^0 < *X' < XP$

Rules:

1.
$$XP \Rightarrow ZP; X'$$
 [ZP is the Specifier of X^0]

2. a.
$$(X' => YP; X')$$
 [YP is a Modifier of X^0]

2. b.
$$X' => X^0$$
; WP [WP is the Complement of X^0]

 $[X^0]$ is the *Head*

Rule 2.a. is optional